jax.scipy.special.expi
Warning
This page was created from a pull request (#9655).
jax.scipy.special.expi¶
- jax.scipy.special.expi = <jax._src.custom_derivatives.custom_jvp object>[source]¶
Exponential integral Ei.
LAX-backend implementation of
expi()
.Original docstring below.
For real \(x\), the exponential integral is defined as 1
\[Ei(x) = \int_{-\infty}^x \frac{e^t}{t} dt.\]For \(x > 0\) the integral is understood as a Cauchy principle value.
It is extended to the complex plane by analytic continuation of the function on the interval \((0, \infty)\). The complex variant has a branch cut on the negative real axis.
- Parameters
x (array_like) – Real or complex valued argument
out (ndarray, optional) – Optional output array for the function results
- Returns
Values of the exponential integral
- Return type
scalar or ndarray
References
- 1
Digital Library of Mathematical Functions, 6.2.5 https://dlmf.nist.gov/6.2#E5