jax.scipy.linalg.expm
Warning
This page was created from a pull request (#9655).
jax.scipy.linalg.expmΒΆ
- jax.scipy.linalg.expm(A, *, upper_triangular=False, max_squarings=16)[source]ΒΆ
Compute the matrix exponential using Pade approximation.
LAX-backend implementation of
expm()
.In addition to the original NumPy argument(s) listed below, also supports the optional boolean argument
upper_triangular
to specify whether theA
matrix is upper triangular, and the optional argumentmax_squarings
to specify the max number of squarings allowed in the scaling-and-squaring approximation method. Return nan if the actual number of squarings required is more thanmax_squarings
.The number of required squarings = max(0, ceil(log2(norm(A)) - c) where norm() denotes the L1 norm, and
c=2.42 for float64 or complex128,
c=1.97 for float32 or complex64
Original docstring below.
- Parameters
A ((N, N) array_like or sparse matrix) β Matrix to be exponentiated.
- Returns
expm β Matrix exponential of A.
- Return type
(N, N) ndarray
References
- 1
Awad H. Al-Mohy and Nicholas J. Higham (2009) βA New Scaling and Squaring Algorithm for the Matrix Exponential.β SIAM Journal on Matrix Analysis and Applications. 31 (3). pp. 970-989. ISSN 1095-7162