jax.numpy.linalg.matrix_rank
Warning
This page was created from a pull request (#9655).
jax.numpy.linalg.matrix_rank¶
- jax.numpy.linalg.matrix_rank(M, tol=None)[source]¶
Return matrix rank of array using SVD method
LAX-backend implementation of
matrix_rank().Original docstring below.
Rank of the array is the number of singular values of the array that are greater than tol.
Changed in version 1.14: Can now operate on stacks of matrices
- Parameters
tol ((...) array_like, float, optional) –
Threshold below which SVD values are considered zero. If tol is None, and
Sis an array with singular values for M, andepsis the epsilon value for datatype ofS, then tol is set toS.max() * max(M, N) * eps.Changed in version 1.14: Broadcasted against the stack of matrices
- Returns
rank – Rank of A.
- Return type
(…) array_like
References
- 1
MATLAB reference documentation, “Rank” https://www.mathworks.com/help/techdoc/ref/rank.html
- 2
W. H. Press, S. A. Teukolsky, W. T. Vetterling and B. P. Flannery, “Numerical Recipes (3rd edition)”, Cambridge University Press, 2007, page 795.