jax.experimental.sparse.BCOO
Warning
This page was created from a pull request (#9655).
jax.experimental.sparse.BCOO¶
- class jax.experimental.sparse.BCOO(args, *, shape)[source]¶
Experimental batched COO matrix implemented in JAX
- Parameters
(data – data and indices in batched COO format.
indices) – data and indices in batched COO format.
shape – shape of sparse array.
- data¶
ndarray of shape
[*batch_dims, nse, *dense_dims]containing the explicitly stored data within the sparse matrix.
- indices¶
ndarray of shape
[*batch_dims, nse, n_sparse]containing the indices of the explicitly stored data. Duplicate entries will be summed.
Examples
Create a sparse array from a dense array:
>>> M = jnp.array([[0., 2., 0.], [1., 0., 4.]]) >>> M_sp = BCOO.fromdense(M) >>> M_sp BCOO(float32[2, 3], nse=3)
Examine the internal representation:
>>> M_sp.data DeviceArray([2., 1., 4.], dtype=float32) >>> M_sp.indices DeviceArray([[0, 1], [1, 0], [1, 2]], dtype=int32)
Create a dense array from a sparse array:
>>> M_sp.todense() DeviceArray([[0., 2., 0.], [1., 0., 4.]], dtype=float32)
Create a sparse array from COO data & indices:
>>> data = jnp.array([1., 3., 5.]) >>> indices = jnp.array([[0, 0], ... [1, 1], ... [2, 2]]) >>> mat = BCOO((data, indices), shape=(3, 3)) >>> mat BCOO(float32[3, 3], nse=3) >>> mat.todense() DeviceArray([[1., 0., 0.], [0., 3., 0.], [0., 0., 5.]], dtype=float32)
Methods
__init__(args, *, shape)block_until_ready()from_scipy_sparse(mat, *[, index_dtype, ...])Create a BCOO array from a
scipy.sparsearray.fromdense(mat, *[, nse, index_dtype, ...])Create a BCOO array from a (dense)
DeviceArray.sort_indices()Return a copy of the matrix with indices sorted.
sum(*args, **kwargs)Sum array along axis.
sum_duplicates([nse, remove_zeros])Return a copy of the array with duplicate indices summed.
todense()Create a dense version of the array.
transpose([axes])Create a new array containing the transpose.
tree_flatten()tree_unflatten(aux_data, children)Attributes
Tdtypen_batchn_densen_sparsendimnsesizeshape